Claude MCP 集成指南:模型上下文协议深度实践

高级 阅读时间: 18分钟 协议集成

深入了解 Claude MCP(Model Context Protocol)的核心概念和实践应用,掌握多模型协作和上下文共享的先进技术。

MCP 协议概述

Model Context Protocol (MCP) 是 Anthropic 开发的开放标准,旨在实现 AI 应用与外部数据源和工具的安全连接。MCP 使得 Claude 能够访问实时信息、执行复杂操作,并与各种系统无缝集成。

🔗 统一连接

标准化的接口协议,简化 AI 应用与外部系统的集成

  • 数据库连接
  • API 集成
  • 文件系统访问
  • 云服务对接

🛡️ 安全可控

内置安全机制,确保数据访问的安全性和可控性

  • 权限管理
  • 访问控制
  • 数据加密
  • 审计日志

⚡ 高效协作

优化的上下文共享机制,提升多模型协作效率

  • 上下文缓存
  • 智能路由
  • 负载均衡
  • 故障恢复

MCP 架构与核心组件

系统架构

🖥️ MCP Client

Claude Desktop, IDE 插件等

↕️

📡 MCP Protocol

标准化通信协议

↕️

🔧 MCP Server

数据源和工具连接器

核心概念

📋 Resources

MCP 服务器提供的数据资源,如文件、数据库记录、API 响应等

{
  "uri": "file:///path/to/document.txt",
  "name": "Project Documentation",
  "description": "Main project documentation file",
  "mimeType": "text/plain"
}

🛠️ Tools

Claude 可以调用的功能工具,如数据查询、文件操作、API 调用等

{
  "name": "search_database",
  "description": "Search the customer database",
  "inputSchema": {
    "type": "object",
    "properties": {
      "query": {"type": "string"},
      "limit": {"type": "number", "default": 10}
    }
  }
}

💬 Prompts

预定义的提示模板,用于标准化常见的交互模式

{
  "name": "analyze_data",
  "description": "Analyze dataset with specific focus",
  "arguments": [
    {
      "name": "dataset",
      "description": "Path to the dataset",
      "required": true
    },
    {
      "name": "focus_area",
      "description": "Analysis focus area",
      "required": false
    }
  ]
}

MCP 服务器开发实战

基础服务器实现

# mcp_server.py
import asyncio
import json
from typing import Any, Dict, List
from mcp import Server, types
from mcp.server.models import InitializationOptions

class CustomMCPServer:
    def __init__(self):
        self.server = Server("custom-mcp-server")
        self.setup_handlers()
    
    def setup_handlers(self):
        """设置 MCP 处理器"""
        
        @self.server.list_resources()
        async def handle_list_resources() -> List[types.Resource]:
            """列出可用资源"""
            return [
                types.Resource(
                    uri="custom://database/users",
                    name="User Database",
                    description="Customer user database",
                    mimeType="application/json"
                ),
                types.Resource(
                    uri="custom://files/logs",
                    name="Application Logs",
                    description="System application logs",
                    mimeType="text/plain"
                )
            ]
        
        @self.server.read_resource()
        async def handle_read_resource(uri: str) -> str:
            """读取指定资源"""
            if uri == "custom://database/users":
                # 模拟数据库查询
                users = await self.query_user_database()
                return json.dumps(users, indent=2)
            elif uri == "custom://files/logs":
                # 读取日志文件
                return await self.read_log_files()
            else:
                raise ValueError(f"Unknown resource: {uri}")
        
        @self.server.list_tools()
        async def handle_list_tools() -> List[types.Tool]:
            """列出可用工具"""
            return [
                types.Tool(
                    name="search_users",
                    description="Search users in the database",
                    inputSchema={
                        "type": "object",
                        "properties": {
                            "query": {
                                "type": "string",
                                "description": "Search query"
                            },
                            "limit": {
                                "type": "number",
                                "description": "Maximum results",
                                "default": 10
                            }
                        },
                        "required": ["query"]
                    }
                ),
                types.Tool(
                    name="create_user",
                    description="Create a new user",
                    inputSchema={
                        "type": "object",
                        "properties": {
                            "name": {"type": "string"},
                            "email": {"type": "string"},
                            "role": {"type": "string", "default": "user"}
                        },
                        "required": ["name", "email"]
                    }
                )
            ]
        
        @self.server.call_tool()
        async def handle_call_tool(name: str, arguments: Dict[str, Any]) -> List[types.TextContent]:
            """执行工具调用"""
            if name == "search_users":
                results = await self.search_users(
                    arguments["query"], 
                    arguments.get("limit", 10)
                )
                return [types.TextContent(
                    type="text",
                    text=json.dumps(results, indent=2)
                )]
            
            elif name == "create_user":
                user = await self.create_user(
                    arguments["name"],
                    arguments["email"],
                    arguments.get("role", "user")
                )
                return [types.TextContent(
                    type="text",
                    text=f"Created user: {json.dumps(user, indent=2)}"
                )]
            
            else:
                raise ValueError(f"Unknown tool: {name}")
    
    async def query_user_database(self) -> List[Dict]:
        """查询用户数据库"""
        # 模拟数据库查询
        return [
            {"id": 1, "name": "Alice", "email": "alice@example.com", "role": "admin"},
            {"id": 2, "name": "Bob", "email": "bob@example.com", "role": "user"},
            {"id": 3, "name": "Charlie", "email": "charlie@example.com", "role": "user"}
        ]
    
    async def search_users(self, query: str, limit: int) -> List[Dict]:
        """搜索用户"""
        all_users = await self.query_user_database()
        filtered_users = [
            user for user in all_users 
            if query.lower() in user["name"].lower() or query.lower() in user["email"].lower()
        ]
        return filtered_users[:limit]
    
    async def create_user(self, name: str, email: str, role: str) -> Dict:
        """创建新用户"""
        # 模拟用户创建
        new_user = {
            "id": len(await self.query_user_database()) + 1,
            "name": name,
            "email": email,
            "role": role
        }
        # 这里应该是实际的数据库插入操作
        return new_user
    
    async def read_log_files(self) -> str:
        """读取日志文件"""
        # 模拟日志读取
        return """
2024-01-15 10:30:00 INFO: Application started
2024-01-15 10:30:05 INFO: Database connection established
2024-01-15 10:31:00 INFO: User login: alice@example.com
2024-01-15 10:32:15 WARN: High memory usage detected
2024-01-15 10:33:00 INFO: User logout: alice@example.com
        """.strip()
    
    async def run(self, transport_type: str = "stdio"):
        """运行 MCP 服务器"""
        if transport_type == "stdio":
            from mcp.server.stdio import stdio_server
            async with stdio_server() as (read_stream, write_stream):
                await self.server.run(
                    read_stream,
                    write_stream,
                    InitializationOptions(
                        server_name="custom-mcp-server",
                        server_version="1.0.0",
                        capabilities=self.server.get_capabilities()
                    )
                )

# 启动服务器
if __name__ == "__main__":
    server = CustomMCPServer()
    asyncio.run(server.run())

高级功能实现

# advanced_mcp_server.py
import asyncio
import aiohttp
import sqlite3
from datetime import datetime
from typing import Optional

class AdvancedMCPServer(CustomMCPServer):
    def __init__(self, db_path: str = "mcp_data.db"):
        super().__init__()
        self.db_path = db_path
        self.init_database()
        self.setup_advanced_handlers()
    
    def init_database(self):
        """初始化数据库"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        cursor.execute("""
            CREATE TABLE IF NOT EXISTS users (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                name TEXT NOT NULL,
                email TEXT UNIQUE NOT NULL,
                role TEXT DEFAULT 'user',
                created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
            )
        """)
        
        cursor.execute("""
            CREATE TABLE IF NOT EXISTS api_logs (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                endpoint TEXT NOT NULL,
                method TEXT NOT NULL,
                status_code INTEGER,
                response_time REAL,
                timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP
            )
        """)
        
        conn.commit()
        conn.close()
    
    def setup_advanced_handlers(self):
        """设置高级处理器"""
        
        @self.server.list_tools()
        async def handle_advanced_tools() -> List[types.Tool]:
            """扩展工具列表"""
            basic_tools = await super().handle_list_tools()
            
            advanced_tools = [
                types.Tool(
                    name="fetch_api_data",
                    description="Fetch data from external API",
                    inputSchema={
                        "type": "object",
                        "properties": {
                            "url": {"type": "string"},
                            "method": {"type": "string", "default": "GET"},
                            "headers": {"type": "object"},
                            "params": {"type": "object"}
                        },
                        "required": ["url"]
                    }
                ),
                types.Tool(
                    name="analyze_logs",
                    description="Analyze API usage logs",
                    inputSchema={
                        "type": "object",
                        "properties": {
                            "start_date": {"type": "string"},
                            "end_date": {"type": "string"},
                            "endpoint_filter": {"type": "string"}
                        }
                    }
                ),
                types.Tool(
                    name="generate_report",
                    description="Generate usage report",
                    inputSchema={
                        "type": "object",
                        "properties": {
                            "report_type": {
                                "type": "string",
                                "enum": ["user_activity", "api_usage", "error_summary"]
                            },
                            "format": {
                                "type": "string",
                                "enum": ["json", "csv", "html"],
                                "default": "json"
                            }
                        },
                        "required": ["report_type"]
                    }
                )
            ]
            
            return basic_tools + advanced_tools
        
        @self.server.call_tool()
        async def handle_advanced_tool_calls(name: str, arguments: Dict[str, Any]) -> List[types.TextContent]:
            """处理高级工具调用"""
            
            if name == "fetch_api_data":
                return await self.fetch_api_data(arguments)
            elif name == "analyze_logs":
                return await self.analyze_logs(arguments)
            elif name == "generate_report":
                return await self.generate_report(arguments)
            else:
                # 回退到基础工具处理
                return await super().handle_call_tool(name, arguments)
    
    async def fetch_api_data(self, args: Dict[str, Any]) -> List[types.TextContent]:
        """获取外部 API 数据"""
        url = args["url"]
        method = args.get("method", "GET")
        headers = args.get("headers", {})
        params = args.get("params", {})
        
        start_time = datetime.now()
        
        try:
            async with aiohttp.ClientSession() as session:
                async with session.request(
                    method, url, headers=headers, params=params
                ) as response:
                    data = await response.text()
                    status_code = response.status
                    
                    # 记录 API 调用日志
                    response_time = (datetime.now() - start_time).total_seconds()
                    await self.log_api_call(url, method, status_code, response_time)
                    
                    return [types.TextContent(
                        type="text",
                        text=f"API Response (Status: {status_code}):\n{data}"
                    )]
        
        except Exception as e:
            await self.log_api_call(url, method, 0, 0)
            return [types.TextContent(
                type="text",
                text=f"API call failed: {str(e)}"
            )]
    
    async def log_api_call(self, endpoint: str, method: str, status_code: int, response_time: float):
        """记录 API 调用日志"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        cursor.execute("""
            INSERT INTO api_logs (endpoint, method, status_code, response_time)
            VALUES (?, ?, ?, ?)
        """, (endpoint, method, status_code, response_time))
        
        conn.commit()
        conn.close()
    
    async def analyze_logs(self, args: Dict[str, Any]) -> List[types.TextContent]:
        """分析 API 使用日志"""
        start_date = args.get("start_date")
        end_date = args.get("end_date")
        endpoint_filter = args.get("endpoint_filter")
        
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        query = "SELECT * FROM api_logs WHERE 1=1"
        params = []
        
        if start_date:
            query += " AND timestamp >= ?"
            params.append(start_date)
        
        if end_date:
            query += " AND timestamp <= ?"
            params.append(end_date)
        
        if endpoint_filter:
            query += " AND endpoint LIKE ?"
            params.append(f"%{endpoint_filter}%")
        
        cursor.execute(query, params)
        logs = cursor.fetchall()
        
        # 分析统计
        total_calls = len(logs)
        success_calls = len([log for log in logs if 200 <= log[3] < 300])
        avg_response_time = sum(log[4] for log in logs) / total_calls if total_calls > 0 else 0
        
        analysis = {
            "total_calls": total_calls,
            "success_rate": success_calls / total_calls if total_calls > 0 else 0,
            "average_response_time": avg_response_time,
            "recent_logs": logs[-10:]  # 最近10条记录
        }
        
        conn.close()
        
        return [types.TextContent(
            type="text",
            text=json.dumps(analysis, indent=2, default=str)
        )]
    
    async def generate_report(self, args: Dict[str, Any]) -> List[types.TextContent]:
        """生成使用报告"""
        report_type = args["report_type"]
        format_type = args.get("format", "json")
        
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        if report_type == "user_activity":
            cursor.execute("SELECT COUNT(*) as total_users FROM users")
            user_count = cursor.fetchone()[0]
            
            cursor.execute("""
                SELECT role, COUNT(*) as count 
                FROM users 
                GROUP BY role
            """)
            role_distribution = cursor.fetchall()
            
            report_data = {
                "total_users": user_count,
                "role_distribution": dict(role_distribution),
                "generated_at": datetime.now().isoformat()
            }
        
        elif report_type == "api_usage":
            cursor.execute("""
                SELECT 
                    COUNT(*) as total_calls,
                    AVG(response_time) as avg_response_time,
                    COUNT(CASE WHEN status_code >= 200 AND status_code < 300 THEN 1 END) as success_calls
                FROM api_logs
            """)
            stats = cursor.fetchone()
            
            report_data = {
                "total_api_calls": stats[0],
                "average_response_time": stats[1],
                "success_calls": stats[2],
                "success_rate": stats[2] / stats[0] if stats[0] > 0 else 0,
                "generated_at": datetime.now().isoformat()
            }
        
        else:  # error_summary
            cursor.execute("""
                SELECT status_code, COUNT(*) as count
                FROM api_logs
                WHERE status_code >= 400
                GROUP BY status_code
                ORDER BY count DESC
            """)
            error_stats = cursor.fetchall()
            
            report_data = {
                "error_distribution": dict(error_stats),
                "total_errors": sum(count for _, count in error_stats),
                "generated_at": datetime.now().isoformat()
            }
        
        conn.close()
        
        if format_type == "json":
            report_text = json.dumps(report_data, indent=2)
        elif format_type == "csv":
            # 简化的 CSV 格式
            report_text = "key,value\n" + "\n".join(
                f"{k},{v}" for k, v in report_data.items()
            )
        else:  # html
            report_text = f"""
            
            {report_type.title()} Report
            
                

{report_type.title()} Report

{json.dumps(report_data, indent=2)}
""" return [types.TextContent( type="text", text=report_text )]

客户端集成与配置

Claude Desktop 配置

# ~/.claude_desktop_config.json
{
  "mcpServers": {
    "custom-server": {
      "command": "python",
      "args": ["/path/to/mcp_server.py"],
      "env": {
        "DATABASE_URL": "sqlite:///mcp_data.db",
        "LOG_LEVEL": "INFO"
      }
    },
    "filesystem": {
      "command": "uvx",
      "args": ["mcp-server-filesystem", "/path/to/allowed/directory"],
      "env": {}
    },
    "github": {
      "command": "uvx",
      "args": ["mcp-server-github"],
      "env": {
        "GITHUB_PERSONAL_ACCESS_TOKEN": "your_token_here"
      }
    }
  }
}

编程式客户端

# mcp_client.py
import asyncio
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client

class MCPClient:
    def __init__(self):
        self.session = None
    
    async def connect_to_server(self, server_params: StdioServerParameters):
        """连接到 MCP 服务器"""
        self.session = await stdio_client(server_params)
        
        # 初始化会话
        await self.session.initialize()
        
        print("Connected to MCP server successfully!")
    
    async def list_available_resources(self):
        """列出可用资源"""
        if not self.session:
            raise RuntimeError("Not connected to server")
        
        resources = await self.session.list_resources()
        print("Available resources:")
        for resource in resources:
            print(f"  - {resource.name}: {resource.uri}")
        
        return resources
    
    async def list_available_tools(self):
        """列出可用工具"""
        if not self.session:
            raise RuntimeError("Not connected to server")
        
        tools = await self.session.list_tools()
        print("Available tools:")
        for tool in tools:
            print(f"  - {tool.name}: {tool.description}")
        
        return tools
    
    async def call_tool(self, tool_name: str, arguments: dict):
        """调用工具"""
        if not self.session:
            raise RuntimeError("Not connected to server")
        
        result = await self.session.call_tool(tool_name, arguments)
        return result
    
    async def read_resource(self, uri: str):
        """读取资源"""
        if not self.session:
            raise RuntimeError("Not connected to server")
        
        content = await self.session.read_resource(uri)
        return content
    
    async def close(self):
        """关闭连接"""
        if self.session:
            await self.session.close()

# 使用示例
async def main():
    client = MCPClient()
    
    # 连接到服务器
    server_params = StdioServerParameters(
        command="python",
        args=["mcp_server.py"]
    )
    
    await client.connect_to_server(server_params)
    
    try:
        # 列出资源和工具
        await client.list_available_resources()
        await client.list_available_tools()
        
        # 调用工具
        search_result = await client.call_tool("search_users", {
            "query": "alice",
            "limit": 5
        })
        print("Search result:", search_result)
        
        # 读取资源
        user_data = await client.read_resource("custom://database/users")
        print("User data:", user_data)
        
    finally:
        await client.close()

if __name__ == "__main__":
    asyncio.run(main())

安全性与最佳实践

安全配置

🔐 认证与授权

# 安全认证示例
class SecureMCPServer(AdvancedMCPServer):
    def __init__(self, api_key: str, allowed_origins: List[str]):
        super().__init__()
        self.api_key = api_key
        self.allowed_origins = allowed_origins
        self.setup_security()
    
    def setup_security(self):
        @self.server.request_handler()
        async def handle_request(request):
            # 验证 API 密钥
            auth_header = request.headers.get("Authorization")
            if not auth_header or not auth_header.startswith("Bearer "):
                raise PermissionError("Missing or invalid authorization")
            
            token = auth_header[7:]  # Remove "Bearer "
            if token != self.api_key:
                raise PermissionError("Invalid API key")
            
            # 验证来源
            origin = request.headers.get("Origin")
            if origin and origin not in self.allowed_origins:
                raise PermissionError("Origin not allowed")
            
            return await super().handle_request(request)

🛡️ 数据保护

# 数据加密和脱敏
import hashlib
from cryptography.fernet import Fernet

class DataProtectionMixin:
    def __init__(self):
        self.encryption_key = Fernet.generate_key()
        self.cipher = Fernet(self.encryption_key)
    
    def encrypt_sensitive_data(self, data: str) -> str:
        """加密敏感数据"""
        return self.cipher.encrypt(data.encode()).decode()
    
    def decrypt_sensitive_data(self, encrypted_data: str) -> str:
        """解密敏感数据"""
        return self.cipher.decrypt(encrypted_data.encode()).decode()
    
    def hash_pii(self, pii_data: str) -> str:
        """对个人信息进行哈希处理"""
        return hashlib.sha256(pii_data.encode()).hexdigest()
    
    def sanitize_output(self, data: dict) -> dict:
        """清理输出数据,移除敏感信息"""
        sensitive_fields = ["password", "ssn", "credit_card"]
        
        sanitized = data.copy()
        for field in sensitive_fields:
            if field in sanitized:
                sanitized[field] = "***REDACTED***"
        
        return sanitized

性能优化

# 性能优化策略
import asyncio
from functools import lru_cache
import aioredis

class OptimizedMCPServer(SecureMCPServer):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.redis_client = None
        self.setup_caching()
    
    async def setup_caching(self):
        """设置缓存系统"""
        self.redis_client = await aioredis.from_url("redis://localhost")
    
    @lru_cache(maxsize=128)
    def get_cached_resource(self, uri: str) -> str:
        """本地缓存资源"""
        # 实现本地缓存逻辑
        pass
    
    async def get_distributed_cache(self, key: str) -> Optional[str]:
        """分布式缓存获取"""
        if self.redis_client:
            return await self.redis_client.get(key)
        return None
    
    async def set_distributed_cache(self, key: str, value: str, ttl: int = 3600):
        """分布式缓存设置"""
        if self.redis_client:
            await self.redis_client.setex(key, ttl, value)
    
    async def batch_process_requests(self, requests: List[dict]) -> List[dict]:
        """批量处理请求"""
        tasks = []
        for request in requests:
            task = asyncio.create_task(self.process_single_request(request))
            tasks.append(task)
        
        results = await asyncio.gather(*tasks, return_exceptions=True)
        return results
    
    async def process_single_request(self, request: dict) -> dict:
        """处理单个请求"""
        # 实现具体的请求处理逻辑
        pass

监控与调试

日志和监控

# 监控和日志系统
import logging
import time
from prometheus_client import Counter, Histogram, Gauge
from functools import wraps

# Prometheus 指标
mcp_requests_total = Counter('mcp_requests_total', 'Total MCP requests', ['method', 'status'])
mcp_request_duration = Histogram('mcp_request_duration_seconds', 'MCP request duration')
mcp_active_connections = Gauge('mcp_active_connections', 'Active MCP connections')

class MonitoringMCPServer(OptimizedMCPServer):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.setup_logging()
        self.active_connections = 0
    
    def setup_logging(self):
        """设置日志系统"""
        logging.basicConfig(
            level=logging.INFO,
            format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
            handlers=[
                logging.FileHandler('mcp_server.log'),
                logging.StreamHandler()
            ]
        )
        self.logger = logging.getLogger(__name__)
    
    def monitor_request(self, method_name: str):
        """请求监控装饰器"""
        def decorator(func):
            @wraps(func)
            async def wrapper(*args, **kwargs):
                start_time = time.time()
                status = "success"
                
                try:
                    result = await func(*args, **kwargs)
                    return result
                except Exception as e:
                    status = "error"
                    self.logger.error(f"Error in {method_name}: {str(e)}")
                    raise
                finally:
                    duration = time.time() - start_time
                    mcp_requests_total.labels(method=method_name, status=status).inc()
                    mcp_request_duration.observe(duration)
                    
                    self.logger.info(f"{method_name} completed in {duration:.3f}s with status: {status}")
            
            return wrapper
        return decorator
    
    @monitor_request("list_resources")
    async def handle_list_resources(self) -> List[types.Resource]:
        """监控的资源列表处理"""
        return await super().handle_list_resources()
    
    @monitor_request("call_tool")
    async def handle_call_tool(self, name: str, arguments: Dict[str, Any]) -> List[types.TextContent]:
        """监控的工具调用处理"""
        return await super().handle_call_tool(name, arguments)
    
    async def handle_connection(self, read_stream, write_stream):
        """处理连接,包含监控"""
        self.active_connections += 1
        mcp_active_connections.set(self.active_connections)
        
        try:
            await super().handle_connection(read_stream, write_stream)
        finally:
            self.active_connections -= 1
            mcp_active_connections.set(self.active_connections)
    
    def get_health_status(self) -> dict:
        """获取健康状态"""
        return {
            "status": "healthy",
            "active_connections": self.active_connections,
            "uptime": time.time() - self.start_time,
            "version": "1.0.0"
        }

调试工具

# 调试和诊断工具
class DebugMCPServer(MonitoringMCPServer):
    def __init__(self, *args, debug_mode: bool = False, **kwargs):
        super().__init__(*args, **kwargs)
        self.debug_mode = debug_mode
        self.request_history = []
    
    async def debug_request(self, request_data: dict):
        """调试请求数据"""
        if self.debug_mode:
            self.request_history.append({
                "timestamp": time.time(),
                "request": request_data,
                "stack_trace": self.get_stack_trace() if self.debug_mode else None
            })
            
            # 保持历史记录在合理范围内
            if len(self.request_history) > 1000:
                self.request_history = self.request_history[-500:]
    
    def get_stack_trace(self) -> str:
        """获取调用栈"""
        import traceback
        return traceback.format_stack()
    
    def get_debug_info(self) -> dict:
        """获取调试信息"""
        return {
            "debug_mode": self.debug_mode,
            "request_history_count": len(self.request_history),
            "recent_requests": self.request_history[-10:] if self.debug_mode else [],
            "server_stats": self.get_health_status()
        }
    
    async def export_debug_data(self, format_type: str = "json") -> str:
        """导出调试数据"""
        debug_data = {
            "server_info": self.get_debug_info(),
            "request_history": self.request_history,
            "exported_at": time.time()
        }
        
        if format_type == "json":
            return json.dumps(debug_data, indent=2, default=str)
        elif format_type == "csv":
            # 简化的 CSV 导出
            import csv
            import io
            
            output = io.StringIO()
            writer = csv.writer(output)
            
            writer.writerow(["timestamp", "request_type", "status"])
            for req in self.request_history:
                writer.writerow([
                    req["timestamp"],
                    req["request"].get("method", "unknown"),
                    "completed"
                ])
            
            return output.getvalue()
        
        return str(debug_data)

实际应用场景

🏢 企业数据集成

连接企业内部系统,实现数据统一访问

  • CRM 系统集成
  • ERP 数据访问
  • 财务系统对接
  • 人力资源管理

🔬 研发工具链

集成开发工具和服务,提升研发效率

  • 代码仓库访问
  • CI/CD 流水线
  • 问题跟踪系统
  • 文档管理平台

📊 数据分析平台

连接各种数据源,支持智能分析

  • 数据库查询
  • API 数据获取
  • 文件系统访问
  • 实时数据流

总结与展望

MCP 集成关键要点:

  • ✅ 标准化的 AI 应用集成协议
  • ✅ 安全可控的外部系统访问
  • ✅ 灵活的资源和工具管理
  • ✅ 高效的上下文共享机制
  • ✅ 完善的监控和调试支持
  • ✅ 广泛的应用场景和扩展性
技术前景:MCP 协议为 AI 应用的生态系统建设奠定了基础,随着更多工具和服务的支持,将极大地扩展 Claude 的能力边界,实现真正的智能化工作流程。